

Agenda

- Site Overview and Remedial Investigation Summary
- Project Tasks:
 - ► Feasibility Study
 - ► Supporting Tasks
 - Data Gap Assessment
 - Groundwater Modeling
- Questions & Answers

erial view of site looking southwest

Hali

BUILDING STRONG

FUSRAP

- FUSRAP an environmental program created in 1974 under the Atomic Energy Act of 1954
- FUSRAP focuses on radiological contamination from MED/AEC activities
- FUSRAP was transferred to USACE in 1997
- USACE is lead agency for investigations and remediation, if necessary; work conducted per CERCLA
- · Site is transferred to DOE after USACE completes work
- NYSDEC is lead state agency and coordinates with other state agencies

Investigation Results Summary

- No imminent threat to human health or the environment
- Constituents of concern are uranium and thorium
- Most heavily impacted buildings are Building 6 and Building 8
- Uranium present in shallow groundwater
- Confirmed no migration of FUSRAP-related materials in soil offsite
- Confirmed no FUSRAP-related impacts present in the Erie Canal

Feasibility Study

- An analysis of range of options to address impacts to the environment at a site and evaluate appropriate options to ensure the protection of human health and the environment by:
 - ► Elimination of the hazard
 - ▶ Reducing the hazard to acceptable risk levels
 - ► Preventing exposure to the hazard through engineering or institutional controls

Data Gap Assessment – Objective

- Evaluate the existing data to determine if it will support the development and evaluation of remedial options in the FS:
 - ▶ Volumes and extent of impacted media
 - ► Understanding of the surficial and subsurface systems and the fate and transport of the suspected contaminants

Data Gap Assessment – Media Evaluated

- · Soil
- Sediment
- Groundwater
- Surface Water
- Buildings

Hell

BUILDING STRONG.

Data Gaps Identified in RI

- Two data gaps were identified:
 - ➤ The horizontal extent of uranium in bedrock groundwater was not defined at the southwestern/southeastern border of site.
 - ➤ The vertical extent of uranium in bedrock groundwater was not defined; need to verify if uranium continues to exceed screening levels in groundwater deeper than 15 feet into bedrock.
- These data gaps will be addressed in the Feasibility Study process.

BUILDING STRONG

Additional Data Collection/Needs

- USACE plans to sample groundwater seeps on walls of canal during the Spring 2011 sampling event
- Select non-FUSRAP (or AEC) related chemical parameters may be analyzed to evaluate their affect on Uranium leaching and mobility in groundwater

Initial Feasibility Study Focus

- Develop general Remedial Action Objectives (RAOs)
- Evaluate Applicable or Relevant and Appropriate Regulations (ARARs)
- Develop specific RAOs

BUILDING STRONG

Feasibility Study - RAOs

- General to protect human health and the environment
- Develop specific RAOs that address:
 - ► FUSRAP contaminants or ROCs (ROCs are those radionuclides that pose an unacceptable risk in certain media for a given land use)
 - ► Media of interest

BUILDING STRONG

Feasibility Study - RAOs cont.

- ▶ Exposure pathways
- ► Proposed Cleanup Levels (based on ARARs if available, consider risk)
- Develop based on current and anticipated future land use - industrial.
- · Consider surrounding land use

Feasibility Study – Preliminary General RAOs (cont.)

- Remove or prevent exposure to impacted media (buildings, soil, groundwater, and utilities)
- Minimize the transport of ROCs in soil to other media (e.g., groundwater)
- Control or reduce the concentrations of ROCs in groundwater to prevent offsite impacts to potential receptors including the emergency City water supply uptake in the Erie Canal

25

BUILDING STRONG.

Feasibility Study - ARARs

- ARARs provide either actual cleanup levels or a basis for calculating such levels
- Identify any chemical-specific ARARs or To Be Considered (TBCs) for the development of RAOs

(TBCs are unpromulgated criteria, advisories, or guidance)

-26

BUILDING STRONG,

Potential ARARs

- Safe Drinking Water Act 42 USC § 300f et seq.; 40 CFR Part 141 National Primary Drinking Water Regulations:
 - Maximum contaminant levels (MCLs) and non-zero maximum contaminant level goals (MCLGs) are potential ARARs for current or potential drinking water sources
- US NRC Radiological Criteria for License Termination, 10 CFR 20 Subpart E

27

Preliminary Specific RAOs

- Remove or prevent exposure to media (buildings, soil, groundwater, and utilities) containing concentrations of FUSRAP ROCs that result in a dose of over 25 mrem/year
- Prevent ingestion of groundwater with FUSRAP ROCs above the MCLs (e.g., Uranium > 30 ug/L)

HHH,

BUILDING STRONG

Preliminary Specific RAOs cont.

 Prevent the offsite migration of uranium in surface water/sediment and groundwater which could result in an exposure above the MCL of 30 μg/L

Preliminary RAOs will be updated as necessary (i.e. after final identification of ARARs)

29

BUILDING STRONG

Point of Compliance

 As part of developing RAOs, need to consider the point of compliance for cleanup criteria

Feasibility Study – General Response Actions (GRA)

- Develop GRA for each medium
- · Consider actions such as:
 - ► No Action (baseline for comparison)
 - ▶ Removal
 - ▶ Disposal
 - ▶ Treatment
 - ▶ Containment
 - ▶ Institutional Controls

Hall

BUILDING STRONG

Groundwater Modeling – Objective

- Develop a baseline flow and transport model for the FS Alternative screening process to evaluate:
 - ► Potential for leachate generation from any remaining residues in soil or other on-site media
 - ▶ Impact to groundwater from each FS alternative
 - ► Fate of re-defined total Uranium plume
 - ► Modeling of remedial technologies

H-H

BUILDING STRONG,

FS Modeling Approach

- Address the fate and transport of elemental (total) uranium in order to evaluate the groundwater impacts
- Data are available to initiate soil leachate model; however modeling of resultant impact to downgradient groundwater will be performed after data gap investigation
- Groundwater model to incorporate new data acquired from additional site investigations following the data gap analysis

Soil Leachate Modeling

- Determine Uranium mass loading from soil to groundwater
- Determine impact on downgradient groundwater – after data gap investigation
- Run alternate soil leaching scenarios
 - ► Account for variability in solubility of U⁶⁺ vs. U⁴⁺
 - ▶ Use location specific source terms
 - ► Incorporate new data on groundwater constituents and quality, redox potentials, presence of non-FUSRAP related chemicals, anions/cations, etc.

BUILDING STRONG

Geochemical Modeling

- Support the flow and transport modeling effort by providing defensible contaminant transport parameters
- Derived from the RI data and the 3 years of post RI data
- Parameters developed for:
 - ▶ Baseline case
 - ➤ Selected remedial alternatives that modify local geochemical environments

BUILDING STRONG

Groundwater Modeling – FS Scenario Modeling

- Support the assessment of alternatives performance with respect to groundwater
- FS alternatives for consideration:
 - ► Monitored Natural Attenuation
 - ► Groundwater Extraction/Ex-Situ Treatment
 - ▶ In-Situ Chemical Treatment
 - ► Physical Containment (e.g., slurry wall)
 - ► Chemical Containment (e.g., permeable reactive barrier, consisting of reactive material placed underground to intercept and treat the ground water plume)
- All rely on source removal as primary step

Contact Us

US Army Corps of Engineers Buffalo District FUSRAP Team 1776 Niagara Street Buffalo, NY 14207

www.lrb.usace.army.mil/fusrap fusrap@usace.army.mil

(800) 833-6390 (Option 4)

